

HMP: Hand Motion Priors for Pose and Shape **Estimation from Video**

Enes Duran^{1,2}, Muhammed Kocabas^{1,3}, Vasileios Choutas^{1,3}, Zicong Fan ^{1,3}, Michael J. Black¹ ¹Max Planck Institute for Intelligent Systems ²University of Tübingen, ³ETH Zürich

1) Motivation

4) Method Overview

		F 0
	29.4	5.9
	28.0	1.9 3.4
		J.4
10.5	26.8	2.0
10.5	27.0	1.9 1 8
10.3	27.1	1.0
10.2	26.7	2.2
10.8	29.6	93
10.0	26.7	2.2
12.1	38.7	17.4
10.8	31.3	2.4
results on Dex\ C ↓-MPJPE ↓ R/	/CB [3]. DexYCB A-MPJPE ↓ F	RA-ACC
	100	
-	LZ.0	-
- 5.2	⊥∠.O -	-
- 5.2 11.6	38.1	17.1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.5 28.0 10.4 27.5 10.5 26.8 10.3 27.0 10.3 27.1 10.2 27.7 10.1 26.7 10.8 29.6 10.1 26.7 10.8 29.6 10.1 26.7 10.8 31.3 results on DexYCB [3]. 31.3 DexYCB A-MPJPE \downarrow RA-MPJPE \downarrow F

PERCEIVING SYSTEMS

INTELLIGENT SYSTEMS

- Goal: To regress hand pose and shape from video.
- **Problem 1:** Current image-based methods do not work well enough on temporal data [1, 2]. They are jittery and susceptible to occlusions.
- Problem 2: We do not have enough temporal data to train a direct feed-forward model with high generalization capacity [3, 4, 5].
- Idea: Can we use clean (non-video) 3D hand motion-capture data available [6]?

2) Hand Motion Prior

• For hand motion prior we adopt NeMF-based architecture. It is a motion VAE model that represent motion as continuous field [7].

 $\mathbf{V} = (\mathbf{v}^p \quad \mathbf{v}^p \quad \mathbf{v}^r \quad \mathbf{v}^r) \subset \mathbb{D}^{J \times 15}$ \mathbf{C} \mathbf{T} \frown $(\cdot) \sim$

Stg.	Variables	Loss Function	Loss Coefficients
	Φ, au, eta	$egin{aligned} \mathcal{L}_o, \mathcal{L}_{ ext{tr}}, \mathcal{L}_eta, \ \mathcal{L}_{os}, \mathcal{L}_{ts}, \mathcal{L}_{2 ext{D}} \end{aligned}$	$\begin{vmatrix} lr = 0.05, \lambda_o = 3, \lambda_{tr} = 1, \lambda_{os} = 1\\ \lambda_{ts} = 5, \lambda_\beta = 3, \lambda_{2D} = 0.05 \end{vmatrix}$
	$\Phi, au, eta, \mathbf{z}_{ heta}$	$egin{aligned} \mathcal{L}_{o}, \mathcal{L}_{ ext{tr}}, \mathcal{L}_{eta}, \ \mathcal{L}_{os}, \mathcal{L}_{ ext{2D}}, \mathcal{L}_{ ext{MP}} \end{aligned}$	$ lr = 0.05, \lambda_o = 2, \lambda_{tr} = 1, \lambda_{os} = 1$ $\lambda_{\beta} = 10, \lambda_{2D} = 0.05, \lambda_{MP} = 300$
$g(\Phi_{a})$	$(\hat{\Phi}_t)^2, \mathcal{L}_{\mathrm{tr}} = 2$	$\sum_{t=0}^{T} \ \tau_t - \hat{\tau}_t\ _2^2, \mathcal{L}_t$	$\sum_{t=0}^{T-1} g(\Phi_{t+1}, \Phi_t)^2, \mathcal{L}_{ts} = \sum_{t=0}^{T-1} \ \sigma_{t+1} \ d \ $
	$a^i a (\Pi (D)$	$I^i + T$) – \mathbf{v}^i	i) $f_{\rm MD} = -\log \mathcal{N} (\mathbf{z}_0; \mu_0(\{\theta_1\}))$

$$\mathcal{E}: \mathbf{X}_t \to \mathbf{z}_\theta \quad \mathcal{D}: (t, \mathbf{z}_\theta) \to x_t \quad \mathbf{X}_t = (\mathbf{x}_t^P, \mathbf{x}_t^P, \mathbf{x}_t, \mathbf{x}_t) \in \mathbb{R}^{n \times n}$$

• The loss function consists of KL divergence and reconstruction error.

 $\mathcal{L}_{\rm rec} = \lambda_{\rm rot} \mathcal{L}_{\rm rot} + \lambda_{\rm ori} \mathcal{L}_{\rm ori} + \lambda_{\rm pos} \mathcal{L}_{\rm pos} + \lambda_{\rm KL} \mathcal{L}_{\rm KL}$

• We use GRAB, TCDHands and SAMP datasets from AMASS [6]. (800K frames)

3) Keypoint Blending & Confidence

 MediapPipe has higher accuracy and sparse detection, PyMAF-X 2D projections are dense but not accurate. Therefore, we use MediaPipe if there is a hand detected else projected PyMAF-X 2D keypoints.

• MediaPipe does not provide per-joint confidence. We compute a confidence based on keypoint detection from N augmented views of an image:

• Keypoint Detection Failure:

• Bounding Box Discontinuity:

• We then project detections back to the original space and calculate standard deviation to approximate the confidence per joint :

 $\sigma_j^2 = \frac{1}{N} \sum_{m=1}^N (P_n - P_0)^2, \qquad \sigma_j = \min(\sigma_j, \gamma), \qquad \alpha_j = 1 - \frac{\sigma_j}{\gamma}.$

References

[1] Hongwen Zhang et al. "PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images". In: IEEE TPAMI (2023).

[2] Kevin Lin, Lijuan Wang, and Zicheng Liu. "End-to-End Human Pose and Mesh Reconstruction with Transformers". In: CVPR. 2021.

[3] Yu-Wei Chao et al. "DexYCB: A benchmark for capturing hand grasping of objects". In: CVPR. 2021, pp. 9044–9053.

[4] Shreyas Hampali et al. "Honnotate: A method for 3D annotation of hand and object poses". In: CVPR. 2020, pp. 3196-3206.

[5] Zicong Fan et al. "ARCTIC: A Dataset for Dexterous Bimanual Hand-Object Manipulation". In: *CVPR*. 2023.

[6] Naureen Mahmood et al. "AMASS: Archive of Motion Capture as Surface Shapes". In: Proceedings of the IEEE International inproceedings on Computer Vision (ICCV). 2019.

[7] Chengan He et al. "NeMF: Neural Motion Fields for Kinematic Animation". In: *NeurIPS*. 2022.

[8] Lixin Yang et al. "ArtiBoost: Boosting Articulated 3D Hand-Object Pose Estimation via Online Exploration and Synthesis". In: CVPR. 2022.

[9] Qichen Fu et al. "Deformer: Dynamic Fusion Transformer for Robust Hand Pose Estimation". In: *ArXiv* abs/2303.04991 (2023).

